PSL-FP-IFP36130200EC 3.2V 100AH ENERGY CELL

Rechargeable Lithium Cell
PSL FP – Lithium Iron Phosphate Series

CELL FEATURES

• Super safe lithium iron phosphate (LiFePO4) chemistry reducing the risk of explosion or combustion due to high impact, over-charging or short circuits
• Construct custom battery design by placing two or more cells in parallel and/or series
• Fast charging and low self-discharge rate
• Durable steel case material

APPROVALS

• UL 1642 certified
• UN 38.3 certified
• ISO9001:2015 - Quality management systems

DIMENSIONS: inch (mm)

Laser Weld Terminal:
H: 7.99in (203mm)
H1: 7.68in (195mm)
D: 2.64in (67.0mm)
T: 1.44in (36.7mm)
W: 5.12in (130mm)

Screw Bolt Terminal:
H: 8.43in (214mm)
H1: 8.27in (210mm)
D: 2.64in (67.0mm)
T: 1.44in (36.7mm)
W: 5.12in (130mm)

GLOBAL HEADQUARTERS
(USA AND INTERNATIONAL EXCLUDING EMEA)
Power-Sonic Corporation
365 Cabela Dr Suite 300,
Reno, Nevada 89523
USA
T: +1 619 661 2020
E: customer-service@power-sonic.com

POWER-SONIC EMEA
(EMEA – EUROPE, MIDDLE EAST AND AFRICA)
Smitspol 4, 3861 RS Nijkerk,
The Netherlands
T NL: +31 33 7410 700
T UK: +44 1268 560 686
T FR: +33 344 32 18 17
E: salesEMEA@power-sonic.com

LITHIUM ENERGY CELL

The PSL-FP-IFP36130200EC is an energy cell. Energy cells are designed to deliver sustained current over a long period of time, making them ideal for use in cyclic applications.

PERFORMANCE SPECIFICATIONS

Nominal Voltage 3.2 V
Rated Capacity 100 AH
Stored Energy 320 Wh
Cycle Life (@DOD100%) 2000 Cycles
Approximate Weight 4.37 lbs (1.99 kg)
Internal Resistance ≤0.5 mΩ
Max Charge Current 100 A/1C
Max Discharge Current 315 A/3C
Charge Cut-off Voltage 3.65 V
Recommended Discharge Cut-Off Voltage 2.5 V
Operating Temperature Range
Charge 32°F (0°C) to 131°F (55°C)
Discharge -4°F (-20°C) to 131°F (55°C)
Recommended 59°F (15°C) to 95°F (35°C)
Temperature Limit Cell skin temperature cannot exceed 65°C
Standard Charging Method 0.5C constant current charge to 3.65V, then constant voltage charge until the charge current declines to 0.05C
Life Expectancy (years) 5 years at one cycle per day
Dimensional Tolerances +/- .04 in. (+/- 1 mm) for all dimensions
Terminal Type M6 Screw Bolt or Laser Weld Plate

STORAGE SPECIFICATIONS

<table>
<thead>
<tr>
<th></th>
<th>1 Month</th>
<th>3 Months</th>
<th>6 Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retention*</td>
<td>90%</td>
<td>85%</td>
<td>80%</td>
</tr>
<tr>
<td>Recovery*</td>
<td>95%</td>
<td>90%</td>
<td>85%</td>
</tr>
</tbody>
</table>

*Cell stored at 77°F (25°C) with 50% SOC.
Storage temperature should be 14°F (-10°C) to 86°F (30°C) with 45-85%RH. It is recommended to store cells at 25°C and between 3.2 and 3.4V for long term storage.

www.power-sonic.com
To ensure safe and efficient operation always refer to the latest edition of our Technical Manual, as published on our website.
© 2019 Power-Sonic Corporation. All rights reserved. All trademarks are the property of their respective owners.
All data subject to change without notice. E&OE.
CAPACITY SPECIFICATIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>Test Method and Condition</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Capacity 0.5C</td>
<td>Capacity measured with discharge current of 0.5C with 2.5V cut-off voltage after the standard charge.</td>
<td>105AH</td>
</tr>
<tr>
<td>Rated Capacity 1C</td>
<td>Capacity measured with discharge current of 1C with 2.5V cut-off voltage after the standard charge.</td>
<td>100AH</td>
</tr>
<tr>
<td>Rated Capacity 2C</td>
<td>Capacity measured with discharge current of 2C with 2.5V cut-off voltage after the standard charge.</td>
<td>95Ah</td>
</tr>
<tr>
<td>Rated Capacity 3C</td>
<td>Capacity measured with discharge current of 3C with 2.5V cut-off voltage after the standard charge.</td>
<td>90AH</td>
</tr>
<tr>
<td>Cycle Life</td>
<td>Temperature: 23+/-5°C Charge: 1C Constant Current to 3.65V, then Constant Voltage to 0.05C cut off Discharge: 1C discharge to 2.5V 80% or more of first cycle capacity at 0.5C discharge</td>
<td>2000 times</td>
</tr>
<tr>
<td>Initial Impedance</td>
<td>Internal resistance measured at AC 1KHz at 50% charge</td>
<td>≤0.5 mΩ</td>
</tr>
</tbody>
</table>

CHARGING SPECIFICATIONS

Charging Current:
Charging current should be less than the maximum charge current specified within this product specification. Charging with higher current than recommended may cause damage to the cell's electrical, mechanical, and safety performance, and could lead to heat generation or leakage of electrolyte.

Charging Voltage:
Charging voltage should be less than the maximum charge voltage specified within this product specification. Charging beyond 3.7V, which is the absolute maximum voltage, is strictly prohibited. The charger shall be designed to comply with this condition. Charging with higher voltage than maximum may cause damage to the cell's electrical, mechanical, and safety performance, and could lead to heat generation or leakage of electrolyte.

Charging Temperature:
The cell should be charged within 32°F (0°C) to 113°F (45°C).

Reverse Charging:
Reverse charging is prohibited. The cell is required to be connected correctly. The polarity has to be confirmed prior to wiring. If the cell is not connected properly, the cell cannot be charged. Reverse polarity charging may cause degradation of the cell's performance, overall damage to the cell, which could lead to heat generation or leakage of electrolyte.
DISCHARGING SPECIFICATIONS

Discharging Current:
Discharging current should be less than the maximum discharge current specified within this product specification. Discharging with higher current than recommended may reduce the capacity of the cell and could cause the cell to over-heat.

Discharging Temperature:
The cell should be charged within -4°F (-20°C) to 140°F (60°C).

Over Discharging:
In order to prevent over-discharging, the cell should be charged periodically, as over-discharging may cause decreased cell performance. In the event that a cell has been over-discharged below 2V, care must be taken to bring the cell out of the over-discharged state. Charging should start with a low current (0.01C) for 15 - 30 minutes, i.e. pre-charging, before rapid charging starts. The rapid charging shall begin after the individual cell voltage has been reached above 3V per cell within 15 - 30 minutes that can be determined with the use of an appropriate timer for pre-charging. In case the individual cell voltage does not rise to 3V within the pre-charging time, then the charger shall have functions to stop further charging and display the cell is at abnormal state.

BATTERY PROTECTION/MONITORING REQUIREMENTS

The cell(s) need to be connected to a Protective Circuit Module (PCM) or Battery Management System (BMS). The PCM/BMS must have function(s) to prevent over-charging, over-discharging, and over-current to maintain the safety and overall performance of the cells. Please note that over current can happen by an external short circuit.

Overcharging:
The PCM/BMS must be programmed to stop charging if the cell reaches 3.7V. Over-current protection must be set at specified maximum continuous rating outlined in this specification.

Over-discharging:
The PCM/BMS must be programmed to stop discharging when the cell reaches 2V. Over-current protection must be set at specified maximum continuous rating outlined in this specification.

WARNINGS

Short Circuit:
Please use enough insulation layers between wiring and the cell to prevent short circuits within the battery pack.

Disassembly:
Never disassemble the cell. Disassembling may cause an internal short circuit, which may cause gas emission, fire, or other problems.
Do not puncture the cell. The electrolyte inside the cell is harmful if it comes into contact with the skin or eyes. In the event the electrolyte comes into contact with skin or eyes, it is recommended to immediately flush the electrolyte with fresh water and seek medical attention.

Warning:
Do not place cell in fire. This may cause the cell to overheat and explode.
Do no immerse the cell into liquids (water, etc.).
Do not use a damaged cell.

Replacement:
If a cell needs to be replaced, please contact Power Sonic. End users should not replace cells.

FURTHER INFORMATION

Please refer to our website www.power-sonic.com or email us at technical-support@power-sonic.com for a complete range of useful downloads, such as product catalogs, material safety data sheets (MSDS), ISO certification, etc.